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Abstract:  

We present an in-situ transmission electron microscopy study of few-chain NbSe3 

encapsulated within the hollow core of carbon nanotubes, where the tube/chain system is 

subjected to applied axial electrical currents.  Electromigration and thermal excitation 

forces result in collective and individual chain dynamics, with concomitant radial 

deformations of the encapsulating tubes. 
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1. Introduction 

Low-dimensional materials, when approaching the single-plane or single-chain 

limit, may display structures and properties very different from those of their bulk 

counterparts[1–3].  Recently, it was shown that small numbers of chains of 1D van der Waals 

(vdW) bonded materials, for example NbSe3, can be encapsulated within the hollow core of 

carbon or boron nitride nanotubes[1].  In the small-chain-number limit inter-chain 

interactions may be altered, which could lead to ultralow-frictional behavior, where one 

chain can freely slide/translate past its neighboring ones.   

One method of externally driving atomic-scale systems is via electromigration. 

Electromigration of closed-packed metals, for example iron[4] and copper[5], is well known. 

Upon the application of an electric field, atoms or small clusters of selected materials 

become mobile due to the mass-diffusion of atoms under the driving force of electrical 

wind force[6,7] and/or thermal gradient. This behavior has been exploited to create 

nanoscale memory devices[4] or nano-pipettes[6]. 

In this paper we report the electrically-driven dynamics of few-chain NbSe3 

encapsulated within the hollow core of multi-wall carbon nanotubes (CNTs).  

Electromigration and thermal forces can cause the encapsulated chains to move bodily 

along the axis of the tube.  The applied current can also cause the chain pack to dissociate, 

and one chain may translate past the others, altering the number of chains locally within 

the chain pack.  Both types of behaviors are usually reversible.  Our experiments suggest a 

new atomic-scale translation mechanism (i.e. nanomotor) based on 1D vdW materials. 
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Few-chain specimens of NbSe3 are encapsulated within CNTs using a chemical vapor 

transport method described previously[1].  Briefly, CNTs (from CheapTubes) are oxidized in 

air at 515 °C for 15 minutes to remove the end-caps before mixing with precursor powders 

(niobium (Nb) and selenium (Se)) with stoichiometric weight ratios (1Nb:3Se). The 

mixture is sealed inside a quartz ampoule under vacuum (10-3 torr), and kept at 690 °C for 

5-7 days. The as-grown materials are then ground and glued onto a copper TEM grid by 

silver paint. The NbSe3-chain-containg CNTs are subjected to longitudinal electrical biasing 

using a Nanofactory transmission electron microscope (TEM) holder.  Imaging is via a JEOL 

JEM 2010 TEM operated at 80 keV.[8]   A schematic of the experiment is present in Fig. 1.  A 

piezo-actuated tungsten tip electrode is brought into electrical contact with the end of a 

selected CNT, whose other end is also electrically connected via the silver paint. An electric 

bias is applied through the nanotube/NbSe3 sample via a Keithley sourcemeter. 

 

Figure 1. Setup of the in-situ electrical biasing experiment. (Left) Photograph of the 

Nanofactory TEM holder. (Right) Schematic of electrical biasing circuit. 

3. Results and Discussion 
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Fig. 2 illustrates examples of NbSe3 chain dynamics within a CNT, in the presence of applied 

electrical current (applied voltages range from 0.5 to 2V).  The upper images are TEM data, 

while the lower images are simplified schematics.  In Fig. 2a, a two-chain pack of NbSe3 is 

spontaneously longitudinally severed, and the two segments thereafter can move 

independently.  One segment may move faster than the other, allowing the segments to 

 

Figure 2. NbSe3 chain dynamics within a CNT. (a) Two segments of two-chain NbSe3 severed 

from a longer host two-chain pack.  The segments can move independently after separation.  

(b) A chain in the first segment slides between or over the other two chains. (c) Three chain 

pack of NbSe3 after the migration. The total lengths of all chains in (a), (b), and (c) are the 

same (approximately 27 nm).  Current flows along the CNT axis.  Simplified schematics below 

each figure show the structures (the black lines represent the CNT while the blue lines 

represent NbSe3 chains). 

drift farther and farther apart with applied current.  Fig. 2b shows how one NbSe3 chain 

may move independently of other chains in the pack.  In this case, a two-chain pack can be 

transformed into a three-chain pack by addition of a chain, obtained from a nearby 

segment.  (The opposite is also observed, i.e. a three-chain pack can be transformed into a 

two-chain pack by removal (sliding off) of a single chain).  Fig. 2c shows the final three-

A
cc

ep
te

d 
A

rti
cl

espontaneously longitudinally severed, and the two segments
A

cc
ep

te
d 

A
rti

cl
espontaneously longitudinally severed, and the two segments

independently.  One segment may move faster than the other, allowing the segments to 

A
cc

ep
te

d 
A

rti
cl

e
independently.  One segment may move faster than the other, allowing the segments to 

A
cc

ep
te

d 
A

rti
cl

e

Figure 

A
cc

ep
te

d 
A

rti
cl

e

Figure 2

A
cc

ep
te

d 
A

rti
cl

e

2. 

A
cc

ep
te

d 
A

rti
cl

e

. NbSe

A
cc

ep
te

d 
A

rti
cl

e

NbSe3

A
cc

ep
te

d 
A

rti
cl

e

3 c

A
cc

ep
te

d 
A

rti
cl

e

chain dynamics within a CNT. (a) Two segments of two

A
cc

ep
te

d 
A

rti
cl

e

hain dynamics within a CNT. (a) Two segments of two

from a longer host two

A
cc

ep
te

d 
A

rti
cl

e

from a longer host two

(b) A chain in the fir

A
cc

ep
te

d 
A

rti
cl

e

(b) A chain in the fir

of NbSe

A
cc

ep
te

d 
A

rti
cl

e

of NbSe3

A
cc

ep
te

d 
A

rti
cl

e

3 after the migration. The total lengths of all cha

A
cc

ep
te

d 
A

rti
cl

e

after the migration. The total lengths of all cha

same (approximately 27 nm). 

A
cc

ep
te

d 
A

rti
cl

e

same (approximately 27 nm). 

each figure show

A
cc

ep
te

d 
A

rti
cl

e

each figure show

A
cc

ep
te

d 
A

rti
cl

e

the structures (the black lines represent the CNT while the blue lines 

A
cc

ep
te

d 
A

rti
cl

e

the structures (the black lines represent the CNT while the blue lines 

represent NbSe

A
cc

ep
te

d 
A

rti
cl

e

represent NbSe3

A
cc

ep
te

d 
A

rti
cl

e

3 chains).

A
cc

ep
te

d 
A

rti
cl

e

chains).

drift farther and A
cc

ep
te

d 
A

rti
cl

e

drift farther and farther apart with applied current.  Fig. 2b shows how one NbSeA
cc

ep
te

d 
A

rti
cl

e

farther apart with applied current.  Fig. 2b shows how one NbSe

may move independently of other chains in the pack.  In this case, a twoA
cc

ep
te

d 
A

rti
cl

e

may move independently of other chains in the pack.  In this case, a twoA
cc

ep
te

d 
A

rti
cl

e



This article is protected by copyright. All rights reserved 

chain pack. During the transformation process in going from two to three chains, the total 

length of all of the NbSe3 chains remains unchanged (~27 nm in this example), which rules 

out the possibility that the observed two-to-three-chain transformation is simply an 

imaging artifact caused by rotation of the material with respect to the incident electron 

beam. 

The chain displacements/transformations are driven by a combination of 

electromigration forces, thermal gradients/agitation, and TEM electron beam irradiation,.  

One possibility for the chain pack motion, as observed in Fig. 2a, is that the host nanotube is 

Joule heated and the local temperature is high enough, and electromigration forces strong 

enough, to deconstruct the NbSe3 chains into individual atoms or small clusters of atoms. 

Those atoms then migrate along the gaps between the remaining chains and the tube’s 

innermost wall to the front end and reconstruct to form the triple chains.[7] Due to 

resolution limits of the TEM, and especially the fast dynamics involved, we cannot 

completely rule out the possibility that foreign atoms, such as carbon atoms from the 

nanotube, may incorporate into the NbSe3 chains. 

A second, more likely, possibility is that electromigration/thermal gradient forces 

drive the chain packs collectively, as in Fig. 2a, or semi-independently, as in Fig. 2b.  

Individual intact chains can slide past other chains in the pack, much like the fraying in a 

multi-strand steel cable just at the breaking point.  In the process illustrated in Fig. 2b, one 

chain in the first segment slithers into the space between or on top of the two chains of the 

second segment to form a triple chain (Fig. 2c)[9].    

These observations imply that interchain interactions are relatively weak in the 

few-chain limit of NbSe3. Here an individual chain can easily move without disturbing the 
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surrounding environment.  Ultralow friction and sliding behaviors have been reported for 

other van der Waals materials in various morphologies, such as MoS2 particles[10], carbon 

nanotubes[11,12] and graphene[12,13].  In general, several factors are attributed to the 

enhancement of the ultralow friction (superlubricity) in vdW materials. They are the 

reduction of number of layers,[14] the decrease of intrinsic defects/impurity 

concentrations[12], and the downsizing of contact area.[11] The as-synthesized few-chain 

NbSe3 satisfies all of these criteria, which may in part explain the sliding behaviors of the 

chains.  

An interesting related observation of encapsulated NbSe3 is that the CNT can be 

radially deformed (necked down) in the encapsulated region.  This is illustrated in Fig. 3.  

Initially only a small segment (5.3 nm long) of the host three-wall CNT is radially deformed, 

in between the region marked by the two white arrows in Fig. 3a. The inner diameter of the 

tube (in the projection direction) decreases from 2.40 nm to 1.82 nm, corresponding to 

24.1 % radial contraction.  When transformed to the double-chain NbSe3 (Fig. 3b) the 

deformation area in the sheathed nanotube extends to cover the entire length of the 

encapsulated NbSe3 double chains (20.1 nm).  The radial deformation of the carbon 

nanotube here ranges from 21.0 % at the two ends to 25.2 % in the middle. When changing 

back to the triple-chain structure (Fig. 3c), the tube becomes deformation-free. 

Apparently having a very small number of NbSe3 chains within a CNT effectively 

enhances the radially inward compressive vdWs forces.   We note that in empty CNTs, vdW 

forces from opposing CNT walls can deform and sometimes fully collapse and flatten a CNT.  

Partially filling the CNT could lead to symmetry breaking in the internal vdWs forces, 

increasing the propensity for CNT collapse.  
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Figure 3. Deformation of the host CNT.  In (a) and (b), a part of the CNT is radially deformed 

in the region between the two white arrows. In (c), the CNT is deformation-free (having a 

uniform diameter). Below the TEM images are corresponding simplified schematics of the 

structures at different stages (the black lines represent the CNT while the blue lines represent 

NbSe3 chains). 

 

 

4. Conclusion 

We observe electrically induced structural transformations in few chains of NbSe3 

encapsulated in CNTs.  Dynamics include breaking of chain packs, reconfiguration of chain 

number, and deformations of the CNT in the encapsulation region.  The chain-like sliding 

mechanism may open up a new pathway to electrical control the stacking and rotation in 

vdW materials. 
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Axial electrical currents applied to multiwall carbon nanotubes filled with chains of 
the transition metal trichalcogenide NbSe3 drive the chains to collective or 
independent chain motion, as revealed by in-situ transmission electron 
microscopy. 
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